

- Train a single-head 16-layer Topoformer BERT model with Masked Language Modeling objective following Geiping and Goldstein's (2022) cramming paradigm on the Bookcorpus-Wikipedia dataset.
- Evaluate task performance on the GLUE benchmark.

Arcaro, M., & Livingstone, M. (2024). A Whole-Brain Topographic Ontology. Annual Review of Neuroscience, 47. Annual Reviews

BERT Model	MNLI	SST-2	STSB	RTE	QNLI	QQP	MRPC	CoLA	GLUE
multihead	83.0/83.2	91.6	84.8	54.7	88.5	86.9	86.4	43.7	78.1
1 head	81.1/81.5	90.0	82.1	51.2	87.6	86.7	84.8	47.5	76.9
Topoformer	80.1/80.1	90.9	75.1	51.2	86.6	86.0	81.5	46.3	75.31

Table 1: Comparison of GLUE performance between non-topographic BERT control models and Topoformer-BERT

References:

trained computational account of topographic organization in primate high-level visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 119(3). https://doi.org/10.1073/pnas.21125 Training a Language Model on a single GPU in one day. In Proceedings of the International Conference on Machine Learning (pp. 11117-11143). PMLR. Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences, 118(45), e2105646118. https://doi.org/10.1073/pnas.2105646118.

Brain-like functional organization in topographic transformer models of language processing

¹Novus Technologies, ²Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, ³Department of Psychology, Harvard University

Interpreting the emergent topography

		Test Suite	Category	Example
		Intactness	Intact	She scored 2 goals in the soccer
			Scrambled	Soccer scored game. the She in
	_	Animacy	Animate	The gnu galloped across the sav
antic contrasts			Inanimate	The oven's warm glow promise
		Concreteness	Concrete	She peeled the banana slowly, sa
			Abstract	Her motive for volunteering was
		Visuomotor	Visual	To solve problems, I often visua
			Motor	His grip on the rope tightened a
		Semantic	Acceptable	A sunflower has yellow petals.
em		Acceptability		
ν	_		Unacceptable	A peanut has yellow petals.
pair itrasts		Agreement	Matched	The authors that hurt the senator
			Mismatched	The authors that hurt the senator
		Licensing	Matched	The authors that liked the senate
			Mismatched	The authors that liked the senate
lar con	Í	Garden-Path	Ambiguous	As the criminal shot the woman
nin ax (top of her lungs.
mi			Unambiguous	As the criminal fled the woman
SV	L			top of her lungs.

Table 2: Overview of test suites with sentence examples. Each test suite had 38 sentences in each category, for a total of 76 sentences in each suite.

decoding accuracy: 0.5

Figure 3: Selectivity-based interpretation of topographic organization in Topoformer-BERT.

Visualizing topography

characterize topography at multiple spatial scales

$$t_{g,d} = r_s(-R_{i,j}, \mathcal{D}_{i,j}) \quad \forall \quad i,j: D_{i,j} < d$$

summarize topography over all scales

$$egin{aligned} oldsymbol{t}_g &= \{t_{g,d_0},...,t_{g,d_n}\}\ ar{t}_g &= rac{1}{n}\sum_i oldsymbol{t}_g^{i} \end{aligned}$$

Local correlation is a good index of topography

Quantification of topography in all layers of Topoformer-BERT

Figure 2: Topographic organization across all layers of Topoformer-BERT.

Tuckute, G., Sathe, A., Srikant, S., Taliaferro, M., Wang, M., Schrimpf, M., Kay, K., & Fedorenko, E. (2024). Driving and suppressing the human language network using large language models. Nature Human Behaviour, 8(2), 1-Lee, H., Margalit, E., Jozwik, K. M., Cohen, M. A., Kanwisher, N., Yamins, D. L. K., & DiCarlo, J. J. (2020). Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network. BioRxiv. https://doi.org/10.1101/2020.07.09.18 Margalit, E., Lee, H., Finzi, D., DiCarlo, J. J., Grill-Spector, K., & Yamins, D. L. K. (2024). A unifying framework for functional organization in early and higher ventral visual cortex. Neuron, 112(14), 2435–2451.e7. https://doi.org/10.1016/j.neuron.2024.04.018

Taha Binhuraib¹, Greta Tuckute², Nicholas M. Blauch³

layer 15 fc_out PC 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

- There is significant alignment in the topographic components of the model and human language network, but both resist neat interpretation (so far)
- Our work provides a new perspective on graded functional topography within the language network, which should be investigated further

Ongoing and future work

- Apply to Topoformer to more domains (vision, audition, ...)
- Residual stream topography, wiring minimization, areally mappable models
- Advance interpretability of model (e.g. SAEs) and brain topography (e.g. more data)
- Unify principles of functional organization within and across brain areas

