

Cortical organization as optimization under distance-dependent constraints

Nicholas M. Blauch, Marlene Behrmann, David C. Plaut Neuroscience Institute and Department of Psychology, Carnegie Mellon University {blauch, behrmann, plaut}@cmu.edu

Carnegie Mellon University Neuroscience Institute

Introduction

- Why do high-level visual representations show a substantial degree of domainlevel topographic specialization?
- Modular theories claim that this reflects optimality of segrated representation for unrelated tasks, and possibly innate mechanisms for implementing such segregation [1]
- However, graded topographic specialization might arise from domain-general distancedependent constraints, such as connectivity [2], and axonal conduction noise [3], (see also: topography from abstract self-organizing principles [4,6])
- Distance-dependent constraints have yet to be explored in terms of local recurrent computation in high-performing deep neural networks
- We investigate the claim that segregation is optimal, the possibility that general spatial constraints on recurrent computation may induce topographic functional specialization in a multi-task DCNN, and whether such specialization is graded in nature.

No advantage for segregated representations of unrelated tasks

Two unrelated tasks and a shared or modular hidden representation

Shared training did not impair and slightly *improved* reconstruction performance (left) and resulted in multiplexing of units onto the two unrelated tasks (right).

Branching architecture for objects+faces (cf. Dobs et. al CCN 2019)

Modified to use:

- Fixed number of filters across architectures (modular brains don't get double the neurons)
- CORnet-Z architecture [5], which has fewer parameters than AlexNet
- Fully interleaved mini-batches during training branching models performance

0.39 V1 V4 IT decoder V1 V4 IT decoder branch point branch point

shared model responses

Sharing representations doesn't hurt and may slightly help performance

Graded domain specialization emerges naturally in the shared model

• Most units have information for both tasks, as in the brain

References

[1] Dobs, K., Kell, A., Palmer, I., Cohen, M., & Kanwisher, N. (2019). Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks. Cognitive Computational Neuroscience

[2] Plaut, D. C., & Behrmann, M. (2011). Complementary neural representations for faces and words: A computational exploration. *Cognitive Neuropsychology*, 28(3&4), 251–275
[3] Cipollini, B., & Cottrell, G. W. (2013). Uniquely human developmental timing may drive cerebral lateralization and interhemispheric collaboration. In *Proceedings of the Cognitive Science Society*, 35(35) (pp. 334–339).

[4] Cowell, R. A., & Cottrell, G. W. (2013). What Evidence Supports Special Processing for Faces? A Cautionary Tale for fMRI Interpretation. Journal of Cognitive Neuroscience, 25(11), 1777–179

[5] Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., & Dicarlo, J. J. (2018). CORnet: Modeling the Neural Mechanisms of Core Object Recognition. BioRxiv, 1–9. [6] Margalit, E., Lee, H., Marques, T., DiCarlo, J., Yamins, D.L.K. (2020). Correlation-based spatial layout of deep neural network features generates ventral stream topography. COSYNE.

Topographic lesions of alT induce a range of domain-general deficits in performance in the topographic model

to ignore a large part of its map