Functionally localized representations contain distributed information: insights from simulations of deep convolutional neural networks
Published:
Blauch N, Aminoff E, Tarr MJ. (2017). Functionally localized representations contain distributed information: insight from simulations of deep convolutional neural networks. 39th Annual Proceedings of the Cognitive Science Society, London U.K.
Abstract
Preferential activation to faces in the brain’s fusiform gyrus has led to the proposed existence of a face module termed the Fusiform Face Area (FFA) (Kanwisher et. al, 1997). However, arguments for distributed, topographical object-form representations in FFA and across visual cortex have been proposed to explain data showing that FFA activation patterns contain decodable information about non-face categories (Haxby et. al, 2001; Hanson & Schmidt, 2011). Using two deep convolutional neural network models able to perform humanlevel object and facial recognition, respectively, we demonstrate that both localized category representations (LCRs) and high-level face-specific representations allow for similar decoding accuracy between non-preferred visual categories as between a preferred and non-preferred category. Our results suggest that neuroimaging of a cortical “module” optimized for face processing should yield significant decodable information for non-face categories so long as representations within the module are activated by non-face stimuli